Multistep ahead atmospheric optical turbulence forecasting for free-space optical communication using empirical mode decomposition and LSTM-based sequence-to-sequence learning

Author:

Li Yalin,Zhang Hongqun,Li Lang,Shi Lu,Huang Yan,Fu Shiyao

Abstract

Although free-space optical communication (FSOC) is a promising means of high data rate satellite-to-ground communication, beam distortion caused by atmospheric optical turbulence remains a major challenge for its engineering applications. Accurate prediction of atmospheric optical turbulence to optimize communication plans and equipment parameters, such as adaptive optics (AO), is an effective means to address this problem. In this research, a hybrid multi-step prediction model for atmospheric optical turbulence, EMD-Seq2Seq-LSTM, is proposed by combining empirical mode decomposition (EMD), sequence-to-sequence (Seq2Seq), and long short-term memory (LSTM) network. First, using empirical mode decomposition to decompose the non-linear and non-stationary atmospheric optical turbulence dataset into a set of stationary components for which internal feature information can be easily extracted significantly reduces the training difficulty and improves the forecast accuracy of the model. Second, sequence-to-sequence is combined with LSTM networks to build a prediction model that can eliminate time delay and make full use of long-term information and then use the model to predict each component separately. Finally, the prediction results of each component are combined to obtain the final atmospheric turbulence forecasting results. To validate the performance of the proposed method, three comparative models, including WRF, LSTM, and sequence-to-sequence-LSTM, are demonstrated in this study. The forecasting results reveal that the proposed model outperforms all other models both qualitatively and quantitatively and thus can be a powerful method for atmospheric optical turbulence forecasting.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3