The Impact of Range-Oversampling Processing on Tornado Velocity Signatures Obtained from WSR-88D Superresolution Data

Author:

Torres Sebastián M.1,Curtis Christopher D.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractWSR-88D superresolution data are produced with finer range and azimuth sampling and improved azimuthal resolution as a result of a narrower effective antenna beamwidth. These characteristics afford improved detectability of weaker and more distant tornadoes by providing an enhancement of the tornadic vortex signature, which is characterized by a large low-level azimuthal Doppler velocity difference. The effective-beamwidth reduction in superresolution data is achieved by applying a tapered data window to the samples in the dwell time; thus, it comes at the expense of increased variances for all radar-variable estimates. One way to overcome this detrimental effect is through the use of range oversampling processing, which has the potential to reduce the variance of superresolution data to match that of legacy-resolution data without increasing the acquisition time. However, range-oversampling processing typically broadens the radar range weighting function and thus degrades the range resolution. In this work, simulated Doppler velocities for vortexlike fields are used to quantify the effects of range-oversampling processing on the velocity signature of tornadoes when using WSR-88D superresolution data. The analysis shows that the benefits of range-oversampling processing in terms of improved data quality should outweigh the relatively small degradation to the range resolution and thus contribute to the tornado warning decision process by improving forecaster confidence in the radar data.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3