The Tornadic Vortex Signature: An Update

Author:

Brown Rodger A.1,Wood Vincent T.1

Affiliation:

1. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract A tornadic vortex signature (TVS) is a degraded Doppler velocity signature of a tornado that occurs when the core region of a tornado is smaller than the half-power beamwidth of the sampling Doppler radar. Soon after the TVS was discovered in the mid-1970s, simulations were conducted to verify that the signature did indeed represent a tornado. The simulations, which used a uniform reflectivity distribution across a Rankine vortex model, indicated that the extreme positive and negative Doppler velocity values of the signature should be separated by about one half-power beamwidth regardless of tornado size or strength. For a Weather Surveillance Radar-1988 Doppler (WSR-88D) with an effective half-power beamwidth of approximately 1.4° and data collected at 1.0° azimuthal intervals, the two extreme Doppler velocity values should be separated by 1.0°. However, with the recent advent of 0.5° azimuthal sampling (“superresolution”) by WSR-88Ds at lower elevation angles, some of the extreme Doppler velocity values unexpectedly were found to be separated by 0.5° instead of 1.0° azimuthal intervals. To understand this dilemma, the choice of vortex model and reflectivity profile is investigated. It is found that the choice of vortex model does not have a significant effect on the simulation results. However, using a reflectivity profile with a minimum at the vortex center does make a difference. The revised simulations indicate that it is possible for the distance between the peak Doppler velocity values of a TVS to be separated by 0.5° with superresolution data collection.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3