Affiliation:
1. NASA Langley Research Center, Hampton, Virginia
2. Science Systems and Applications, Inc., Hampton, Virginia
Abstract
AbstractThe Clouds and the Earth’s Radiant Energy System (CERES) project has provided the climate community 15 years of globally observed top-of-the-atmosphere fluxes critical for climate and cloud feedback studies. To accurately monitor the earth’s radiation budget, the CERES instrument footprint fluxes must be spatially and temporally averaged properly. The CERES synoptic 1° (SYN1deg) product incorporates derived fluxes from the geostationary satellites (GEOs) to account for the regional diurnal flux variations in between Terra and Aqua CERES measurements. The Edition 4 CERES reprocessing effort has provided the opportunity to reevaluate the derivation of longwave (LW) fluxes from GEO narrowband radiances by examining the improvements from incorporating 1-hourly versus 3-hourly GEO data, additional GEO infrared (IR) channels, and multichannel GEO cloud properties. The resultant GEO LW fluxes need to be consistent across the 16-satellite climate data record. To that end, the addition of the water vapor channel, available on all GEOs, was more effective than using a reanalysis dataset’s column-weighted relative humidity combined with the window channel radiance. The benefit of the CERES LW angular directional model to derive fluxes was limited by the inconsistency of the GEO cloud retrievals. Greater success was found in the direct conversion of window and water vapor channel radiances into fluxes. Incorporating 1-hourly GEO fluxes had the greatest impact on improving the accuracy of high-temporal-resolution fluxes, and normalizing the GEO LW fluxes with CERES greatly reduced the monthly regional LW flux bias.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
151 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献