Evaluation of KDP Estimation Algorithm Performance in Rain Using a Known-Truth Framework

Author:

Reimel Karly J.1,Kumjian Matthew1

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Abstract

AbstractAccurate estimation of specific differential phase (KDP) is necessary for rain rate estimation, attenuation correction, and hydrometeor classification algorithms. There are numerous published methods to process polarimetric radar observations of propagation differential phase shift (ΦDP) and estimate KDP, but the corresponding KDP estimate uncertainty is unquantified. This study provides guidance on how commonly used KDP estimation algorithms perform in various environments. We create numerous synthetic (“true”) KDP profiles, integrate over them to obtain “smoothed” ΦDP, and then add noise typical of S-band operational weather radar measurements. Each algorithm is applied to our noisy ΦDP profiles and compared to the true KDP profile such that the errors and uncertainty are quantified. The synthetic KDP profiles are Gaussian in shape, which allows systematic variations in their magnitude and width to determine how each algorithm performs in smooth, slowly changing KDP profiles, as well as steep profiles. Results demonstrate that algorithm performance is dependent on the ΦDP field received. These results are further supported by an error analysis of each algorithm for two more complicated synthetic KDP profiles. Some KDP algorithms allow users to change various tuning parameters; a subset of these tuning parameters is tested to provide guidance on how changing these parameters impacts algorithm performance. We then provide evidence that our known-truth framework provides insight into algorithm performance in observed data through two case studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3