Evaluating the Polarimetric Radio Occultation Technique Using NEXRAD Weather Radars

Author:

Paz Antía12ORCID,Padullés Ramon12ORCID,Cardellach Estel12ORCID

Affiliation:

1. Institute of Space Sciences, 08193 Barcelona, Spain

2. Institute for Space Studies of Catalonia, 08034 Barcelona, Spain

Abstract

Currently, it remains a challenge to effectively monitor areas experiencing intense precipitation and the associated atmospheric conditions on a global scale. This challenge arises due to the limitations on both active and passive remote sensing methods. Apart from the lack of observations in remote areas, the quality of some observations deteriorates when heavy precipitation is present, making it difficult to obtain highly accurate measurements of the thermodynamic parameters driving these weather events. However, there is a promising solution in the form of the Global Navigation Satellite System (GNSS) Polarimetric Radio Occultation (PRO) technique. This approach provides a way to assess the large-scale bulk-hydrometeor characteristics of regions with heavy precipitation and the meteorological conditions associated with them. PRO offers vertical profiles of atmospheric variables, including temperature, pressure, water vapor pressure, and information about hydrometeors, all in a single fine-vertical resolution observation. To continue validating the PRO technique, we make use of polarimetric weather data from Next Generation Weather Radars (NEXRAD), focusing on comparing specific differential phase shift (Kdp) structures to PRO observable differential phase shift (ΔΦ). We have seen that PAZ and NEXRAD exhibit a good agreement on the vertical structure of the observable ΔΦ and that their combination could be useful for enhancing our understanding of the microphysics underlying heavy precipitation events.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3