Improved Surface Velocity and Trajectory Estimates in the Gulf of Mexico from Blended Satellite Altimetry and Drifter Data

Author:

Berta Maristella1,Griffa Annalisa12,Magaldi Marcello G.13,Özgökmen Tamay M.2,Poje Andrew C.4,Haza Angelique C.2,Olascoaga M. Josefina2

Affiliation:

1. * ISMAR, CNR, La Spezia, Italy

2. + Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

3. # The Johns Hopkins University, Baltimore, Maryland

4. @ City University of New York, New York, New York

Abstract

AbstractThis study investigates the results of blending altimetry-based surface currents in the Gulf of Mexico with available drifter observations. Here, subsets of trajectories obtained from the near-simultaneous deployment of about 300 Coastal Ocean Dynamics Experiment (CODE) surface drifters provide both input and control data. The fidelity of surface velocity fields are measured in the Lagrangian frame by a skill score that compares the separation between observed and hindcast trajectories to the observed absolute dispersion. Trajectories estimated from altimetry-based velocities provide satisfactory average results (skill score > 0.4) in large (~100 km) open-ocean structures. However, the distribution of skill score values within these structures is quite variable. In the DeSoto Canyon and on the shelf where smaller-scale structures are present, the overall altimeter skill score is typically reduced to less than 0.2. After 3 days, the dataset-averaged distance between hindcast and drifter trajectories, , is about 45 km—only slightly less than the average dispersion of the observations, km. Blending information from a subset of drifters via a variational method leads to significant improvements in all dynamical regimes. Skill scores typically increase to 0.8 with reduced to less than half of . Blending available drifter information with altimetry data restores velocity field variability at scales not directly sampled by the altimeter and introduces ageostrophic components that cannot be described by simple Ekman superposition. The proposed method provides a means to improve the fidelity of near-real-time synoptic estimates of ocean surface velocity fields by combining altimetric data with modest numbers of in situ drifter observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3