Impacts of the Lagrangian Data Assimilation of Surface Drifters on Estimating Ocean Circulation during the Gulf of Mexico Grand Lagrangian Deployment

Author:

Sun Luyu1ORCID,Penny Stephen G.123,Harrison Matthew4

Affiliation:

1. a Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. b Sofar Ocean Technologies, San Francisco, California

3. c Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

4. d NOAA/Geophysical Fluid Dynamical Laboratory, Princeton, New Jersey

Abstract

Abstract Satellite-tracked in situ surface drifters, providing measurements of near-surface ocean quantities, have become increasingly prevalent in the global ocean observation system. However, the position data from these instruments are typically not leveraged in operational ocean data assimilation (DA) systems. In this work, the impact of an augmented-state Lagrangian data assimilation (LaDA) method using the local ensemble Kalman transform filter is investigated within a realistic regional ocean DA system. Direct positioning data of surface drifters released by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment during the summer 2012 Grand Lagrangian Deployment Experiment are assimilated using a Gulf of Mexico (GoM) configuration of the Modular Ocean Model, version 6, of the Geophysical Fluid Dynamics Laboratory. Multiple cases are tested using both 1/4° eddy-permitting and 1/12° eddy-resolving model resolutions: 1) a free running model simulation, 2) a conventional assimilation of temperature and salinity profile observations, 3) an assimilation of profiles and Lagrangian surface drifter positions, and 4) an assimilation of the profiles and derived Eulerian velocities. LaDA generally produces more accurate estimates of all fields compared to the assimilation of derived Eulerian velocities, with estimates of surface currents notably improving, when transitioning to 1/12° model resolution. In particular, LaDA produces the most accurate estimates of sea surface velocities under tropical cyclone conditions when Hurricane Isaac (2012) impacted the GoM. Further experiments applying a vertical localization while assimilating surface drifter positions improve the estimates of temperature and salinity below the mixed layer depth. Cases including the surface drifter positions in the DA show better Lagrangian predictability than the conventional DA.

Funder

Climate Program Office

National Oceanic and Atmospheric Administration

Indian Institute of Technology Madras

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3