Fitting Precipitation Particle Size–Velocity Data to Mixed Joint Probability Density Function with an Expectation Maximization Algorithm

Author:

Katsuyama Yuta1,Inatsu Masaru2

Affiliation:

1. Graduate School of Science, Hokkaido University, Sapporo, Japan

2. Faculty of Science, and Center for Natural Hazards Research, Hokkaido University, Sapporo, Japan

Abstract

AbstractThis paper proposes an estimation method of joint size and terminal velocity distribution on the basis of sampling data of precipitation particles containing multiple types. Assuming that the velocity follows the normal distribution and the size follows the gamma distribution, the method searches a locally maximum logarithmic likelihood within a realistic parameter range using the expectation–maximization algorithm. Several test populations were prepared with a realistic number of elements, and then the method was evaluated by retrieving the populations from their sample. The results showed that the original parameters were successfully estimated in most cases of the test population containing some of liquids, graupels, and rimed and unrimed aggregates. The original number of elements was also estimated with an adjustment of the number of elements in a manner such that each of their minority fractions exceeded a threshold. Applied to the two-dimensional disdrometer observation data, the method was helpful to discard frequently observed erroneous data with unrealistically large fall velocity.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science, and Technology

Environmental Restoration and Conservation Agency

Research Field of Hokkaido Weather Forecast and Technology Development

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3