An Improved Quality Control for AIRS Total Column Ozone Observations within and around Hurricanes

Author:

Wang H.1,Zou X.1,Li G.2

Affiliation:

1. Department of Meteorology, The Florida State University, Tallahassee, Florida, and Center for Data Assimilation Research and Applications, Nanjing University of Information Science & Technology, Nanjing, China

2. Center for Data Assimilation Research and Applications, Nanjing University of Information Science & Technology, Nanjing, China

Abstract

Abstract Atmospheric Infrared Sounder (AIRS) provides twice-daily global observations from which total column ozone data can be retrieved. However, 20% ~ 30% of AIRS ozone data are flagged to be of bad quality. Most of the flagged data were identified to have total precipitable water (PW) errors, defined by the ratio between PW errors and PW retrieval exceeding 35%. It was found that most data within hurricanes were flagged because of extremely low total PW, which is also retrieved from AIRS observations. In this study, a new PW ratio, defined by the AIRS PW error divided by the National Centers for Environmental Prediction (NCEP) zonal average PW, is used to replace the one in AIRS quality control (QC) scheme. Data are removed if the new PW error ratio exceeds 33%. Only 5% ~ 10% of AIRS ozone data are flagged to be of bad quality. Following this step of QC, a linear regression model, which links the total column ozone to the model’s vertical mean potential vorticity (MPV), is established for future data assimilation of AIRS total ozone. Outliers identified by a biweight algorithm are further removed. Numerical results implementing the proposed QC method are compared with those provided by AIRS for Typhoon Sinlaku (2008) in the Pacific Ocean and Hurricane Earl (2010) in the Atlantic Ocean. It is shown that the new scheme works by retaining more of the good data while still removing the bad data.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference30 articles.

1. On the relation between ozone and potential vorticity;Allaart;Geophys. Res. Lett.,1993

2. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems;Aumann;IEEE Trans. Geosci. Remote Sens.,2003

3. AIRS-team retrieval for core products and geophysical parameters;Barnet,2007

4. Tropopause folding: Upper-level frontogenesis and beyond;Bosart,2003

5. SCIAMACHY: Mission objectives and measurement modes;Bovensmann;J. Atmos. Sci.,1999

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3