Optimization of N-PERT Solar Cell under Atacama Desert Solar Spectrum

Author:

Ferrada PabloORCID,Marzo AitorORCID,Ferrández Miriam Ruiz,Reina Emilio RuizORCID,Ivorra BenjaminORCID,Correa-Puerta JonathanORCID,Campo Valeria del

Abstract

In the Atacama Desert, the spectral distribution of solar radiation differs from the global standard, showing very high levels of irradiation with a particularly high ultraviolet content. Additionally, the response of photovoltaic (PV) technologies is spectrally dependent, so it is necessary to consider local conditions and type of technology to optimize PV devices since solar cells are usually designed for maximum performance under standard testing conditions (STC). In this work, we determined geometrical and doping parameters to optimize the power of an n-type bifacial passivated emitter and rear totally diffused solar cell (n-PERT). Six parameters (the thicknesses of cell, emitter, and back surface field, as well as doping concentration of emitter, base, and back surface field) were used to optimize the cell under the Atacama Desert spectrum (AM 1.08) and under standard conditions (AM 1.5) through a genetic algorithm. To validate the model, the calculated performance of the n-PERT cell was compared with experimental measurements. Computed and experimental efficiencies showed a relative difference below 1% under STC conditions. Through the optimization process, we found that different geometry and doping concentrations are necessary for cells to be used in the Atacama Desert. Reducing the thickness of all layers and increasing doping can lead to a relative increment of 5.4% in the cell efficiency under AM 1.08. Finally, we show the potential effect of metallization and the viability of reducing the thicknesses of the emitter and the back surface field.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3