On Shipboard Marine X-Band Radar Near-Surface Current ‘‘Calibration’’

Author:

Lund Björn1,Graber Hans C.1,Hessner Katrin2,Williams Neil J.1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

2. OceanWaveS GmbH, Lüneburg, Germany

Abstract

AbstractThe ocean wave signatures within conventional noncoherent marine X-band radar (MR) image sequences can be used to derive near-surface current information. On ships, an accurate near-real-time record of the near-surface current could improve navigational safety. It could also advance understanding of air–sea interaction processes. The standard shipboard MR near-surface current estimates were found to have large errors (of the same order of magnitude as the signal) that are associated with ship speed and heading. For acoustic Doppler current profilers (ADCPs), ship heading errors are known to induce a spurious cross-track current that is proportional to the ship speed and the sine of the error angle. Conventional mechanical gyrocompasses are very reliable heading sensors, but they are too inaccurate for shipboard ADCPs. Within the ADCP community, it is common practice to correct the gyrocompass measurements with the help of multiantenna carrier-phase differential GPS systems. This study shows how a similar multiantenna GPS-based ship heading correction technique stands to improve the accuracy of MR near-surface current estimates. Changes to the standard MR near-surface current retrieval method that are necessary for high-quality results from ships are also introduced. MR and ADCP data collected from R/V Roger Revelle during the Impact of Typhoons on the Ocean in the Pacific (ITOP) program in 2010 are used to demonstrate the MR currents’ accuracy and reliability.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3