On the Prediction of Stratospheric Balloon Trajectories: Improving Winds with Mesoscale Simulations

Author:

Jewtoukoff Valérian1,Plougonven Riwal1,Hertzog Albert1,Snyder Chris2,Romine Glen2

Affiliation:

1. Laboratoire de Météorologie Dynamique, CNRS, Ecole Polytechnique, Palaiseau, France

2. National Center for Atmospheric Research,b Boulder, Colorado

Abstract

AbstractSafety compliance issues for operational studies of the atmosphere with balloons require quantifying risks associated with descent and developing strategies to reduce the uncertainties at the location of the touchdown point. Trajectory forecasts are typically computed from weather forecasts produced by an operational center, for example, the European Centre for Medium-Range Weather Forecasts. This study uses past experiments to investigate strategies for improving these forecasts. Trajectories for open stratospheric balloon (OSB) short-term flights are computed using mesoscale simulations with the Weather and Research Forecasting (WRF) Model initialized with ECMWF operational forecasts and are assimilated with radio soundings using the Data Assimilation Research Testbed (DART) ensemble Kalman filter, for three case studies during the Strapolété 2009 campaign in Sweden. The results are very variable: in one case, the error in the final simulated position is reduced by 90% relative to the forecast using the ECMWF winds, while in another case the forecast is hardly improved. Nonetheless, they reveal the main source of forecasting error: during the ceiling phase, errors due to unresolved inertia–gravity waves accumulate as the balloon continuously experiences one phase of a wave for a few hours, whereas they essentially average out during the ascent and descent phases, when the balloon rapidly samples through whole wave packets. This sensitivity to wind during the ceiling phase raises issues regarding the feasibility of such forecasts and the observations that would be needed. The ensemble spread is also analyzed, and it is noted that the initial ensemble perturbations should probably be improved in the future for better forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3