Microstructure Measurements from an Underwater Glider in the Turbulent Faroe Bank Channel Overflow

Author:

Fer Ilker1,Peterson Algot K.1,Ullgren Jenny E.1

Affiliation:

1. Geophysical Institute, University of Bergen, Bergen, Norway

Abstract

AbstractMeasurements of ocean microstructure are made in the turbulent Faroe Bank Channel overflow using a turbulence instrument attached to an underwater glider. Dissipation rate of turbulent kinetic energy ε is measured using airfoil shear probes. A comparison is made between 152 profiles from dive and climb cycles of the glider during a 1-week mission in June 2012 and 90 profiles collected from the ship using a vertical microstructure profiler (VMP). Approximately one-half of the profiles are collocated. For 96% of the dataset, measurements are of high quality with no systematic differences between dives and climbs. The noise level is less than 5 × 10−11 W kg−1, comparable to the best microstructure profilers. The shear probe data are contaminated and unreliable at the turning depth of the glider and for U/ut < 20, where U is the flow past the sensor, ut = (ε/N)1/2 is an estimate of the turbulent velocity scale, and N is the buoyancy frequency. Averaged profiles of ε from the VMP and the glider agree to better than a factor of 2 in the turbulent bottom layer of the overflow plume, and beneath the stratified and sheared plume–ambient interface. The glider average values are approximately a factor of 3 and 9 times larger than the VMP values in the layers defined by the isotherms 3°–6° and 6°–9°C, respectively, corresponding to the upper part of the interface and above. The discrepancy is attributed to a different sampling scheme and the intermittency of turbulence. The glider offers a noise-free platform suitable for ocean microstructure measurements.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3