The Effect of Drifter GPS Errors on Estimates of Submesoscale Vorticity

Author:

Spydell Matthew S.1,Feddersen Falk1,Macmahan Jamie2

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. Naval Post Graduate School, Monterey, California

Abstract

AbstractDifferential kinematic flow properties (DKP), such as vertical vorticity, have been estimated from surface drifters. However, previous DKP error estimates were a posteriori and did not include correlated errors across drifters. To accurately estimate submesoscale (≤1 km) DKPs from drifters, errors must be better understood. Here, the a priori vorticity standard error is derived that depends upon the number of drifters in the cluster, the drifter cluster major and minor axes lengths, the instrument velocity error, and the cross-drifter error correlation. Two stationary GPS experiments, with zero vorticity, were performed at separations of O(101–103) m to understand vorticity error and test the derivation using 1 Hz position differences and Doppler shift velocities. Vorticity errors of ±5f (where f is the local Coriolis parameter)were found for ≈40 m separations. The frequency-dependent velocity variances and GPS-to-GPS correlations are quantified. Vorticity estimated with a “blended” velocity has reduced error. The stationary vorticity error can be well predicted given velocity error, correlation, and minor axis length. Vorticity error analysis is applied to submesoscale-sampling in situ GPS drifters near Point Sal, California. The derivation predicts when large high-frequency vorticity fluctuations (indicating noise) occur. Previously, cluster area or ellipticity were used as criteria to distinguish error. We show that the drifter cluster minor axis (narrowness) is a key time-dependent factor affecting vorticity error, and even for velocity errors <0.004 m s−1, the vorticity error exceeds ±5f when cluster minor axis <50 m. These results will aid submesoscale drifter deployment planning.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conditions for Reliable Divergence Estimates from Drifter Triplets;Journal of Atmospheric and Oceanic Technology;2022-10

2. Drifter Observations Reveal Intense Vertical Velocity in a Surface Ocean Front;Geophysical Research Letters;2022-09-22

3. Vorticity in the Wake of Palau from Lagrangian Surface Drifters;Journal of Physical Oceanography;2022-09

4. On Characterizing Ocean Kinematics from Surface Drifters;Journal of Atmospheric and Oceanic Technology;2022-08

5. Observing and quantifying ocean flow properties using drifters with drogues at different depths;Journal of Physical Oceanography;2021-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3