Vorticity in the Wake of Palau from Lagrangian Surface Drifters

Author:

Zeiden Kristin L.1,Rudnick Daniel L.2,MacKinnon Jennifer A.2,Hormann Verena2,Centurioni Luca2

Affiliation:

1. a Applied Physics Laboratory, University of Washington, Seattle, Washington

2. b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Wake eddies are important to physical oceanographers because they tend to dominate current variability in the lee of islands. However, their generation and evolution has been difficult to study due to their intermittency. In this study, 2 years of observations from Surface Velocity Program (SVP) drifters are used to calculate relative vorticity (ζ) and diffusivity (κ) in the wake generated by westward flow past the archipelago of Palau. Over 2 years, 19 clusters of five SVP drifters ∼5 km in scale were released from the north end of the archipelago. Out of these, 15 were entrained in the wake. We compare estimates of ζ from both velocity spatial gradients (least squares fitting) and velocity time series (wavelet analysis). Drifters in the wake were entrained in either energetic submesoscale eddies with initial ζ up to 6f, or island-scale recirculation and large-scale lateral shear with ζ ∼ 0.1f. Here f is the local Coriolis frequency. Mean wake vorticity is initially 1.5f but decreases inversely with time (t), while mean cluster scale (L) increases as Lt. Kinetic energy measured by the drifters is comparatively constant. This suggests ζ is predominantly a function of scale, confirmed by binning enstrophy (ζ2) by inverse scale. We find κL4/3 and upper and lower bounds for L(t) are given by t3/2 and t1/2, respectively. These trends are predicted by a model of dispersion due to lateral shear. We argue the observed time dependence of cluster scale and vorticity suggest island-scale shear controls eddy growth in the wake of Palau.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3