Pyranometer Thermal Offset: Measurement and Analysis

Author:

Sanchez G.1,Serrano A.1,Cancillo M. L.1,Garcia J. A.1

Affiliation:

1. Department of Physics, University of Extremadura, Badajoz, Spain

Abstract

AbstractThe reliable estimation of the radiative forcing and trends in radiation requires very accurate measurements of global and diffuse solar irradiance at the earth’s surface. To improve measurement accuracy, error sources such as the pyranometer thermal offset should be thoroughly evaluated. This study focuses on the measurement and analysis of this effect in a widely used type of pyranometer. For this aim, a methodology based on capping the pyranometer has been used and different criteria for determining the thermal offset have been applied and compared. The thermal offset of unventilated pyranometers for global and diffuse irradiance has been measured under a wide range of cloud, ambient temperature, wind speed, and radiation conditions. Significant differences in absolute values and variability have been observed between daytime and nighttime, advising against correcting the thermal offset effect based only on nighttime values. Notable differences in the thermal offset between cloudy and cloud-free conditions have been also observed. The main results show that the ambient temperature, the radiation, and its direct/diffuse partitioning are the variables more related to the daytime thermal offset.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3