Retrieval of gridded aerosol direct radiative forcing based on multiplatform datasets

Author:

Wang Yanyu,Lyu Rui,Xie Xin,Meng Ze,Huang Meijin,Wu Junshi,Mu Haizhen,Yu Qiu-Run,He Qianshan,Cheng Tiantao

Abstract

Abstract. Atmospheric aerosols play a crucial role in regional radiative budgets. Previous studies on clear-sky aerosol direct radiative forcing (ADRF) have mainly been limited to site-scale observations or model simulations for short-term cases, and long-term distributions of ADRF in China have not been portrayed yet. In this study, an accurate fine-resolution ADRF estimate at the surface was proposed. Multiplatform datasets, including satellite (MODIS aboard Terra and Aqua) and reanalysis datasets, served as inputs to the Santa Barbara Discrete Atmospheric Radiative Transfer (SBDART) model for ADRF simulation with consideration of the aerosol vertical profile over eastern China during 2000–2016. Specifically, single-scattering albedo (SSA) from the Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) was validated with sun photometers over eastern China. The gridded asymmetry parameter (ASY) was then simulated by matching the calculated top-of-atmosphere (TOA) radiative fluxes from the radiative transfer model with satellite observations (Clouds and the Earth's Radiant Energy System, CERES). The high correlation and small discrepancy (6–8 W m−2) between simulated and observed radiative fluxes at three sites (Baoshan, Fuzhou, and Yong'an) indicated that ADRF retrieval is feasible and has high accuracy over eastern China. Then this method was applied in each grid of eastern China, and the overall picture of ADRF distributions over eastern China during 2000–2016 was displayed. ADRF ranges from −220 to −20 W m−2, and annual mean ADRF is −100.21 W m−2, implying that aerosols have a strong cooling effect at the surface in eastern China. With the economic development and rapid urbanization, the spatiotemporal changes of ADRF during the past 17 years are mainly attributed to the changes of anthropogenic emissions in eastern China. Our method provides the long-term ADRF distribution over eastern China for the first time, highlighting the importance of aerosol radiative impact under climate change.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3