Estimation of Near-Real-Time Outgoing Longwave Radiation from Cross-Track Infrared Sounder (CrIS) Radiance Measurements

Author:

Zhang Kexin1,Goldberg Mitchell D.2,Sun Fengying3,Zhou Lihang4,Wolf Walter W.4,Tan Changyi1,Nalli Nicholas R.1,Liu Quanhua4

Affiliation:

1. a I. M. Systems Group, Inc., Rockville, Maryland

2. b NOAA/JPSS, Lanham, Maryland

3. c Stinger Ghaffarian Technologies, Inc., Greenbelt, Maryland

4. d NOAA/NESDIS/STAR, College Park, Maryland

Abstract

AbstractThis study describes the algorithm for deriving near-real-time outgoing longwave radiation (OLR) from Cross-Track Infrared Sounder (CrIS) hyperspectral infrared sounder radiance measurements. The estimation of OLR on a near-real-time basis provides a unique perspective for studying the variability of Earth’s current atmospheric radiation budget. CrIS-derived OLR values are estimated as a weighted linear combination of CrIS-adjusted “pseudochannel” radiances. The algorithm uses the Atmospheric Infrared Sounder (AIRS) as the transfer instrument, and a least squares regression algorithm is applied to generate two sets of regression coefficients. The first set of regression coefficients is derived from collocated Clouds and the Earth’s Radiant Energy System (CERES) OLR on Aqua and pseudochannel radiances calculated from AIRS radiances. The second set of coefficients is derived to adjust the CrIS pseudochannel radiance to account for the differences in pseudochannel radiances between AIRS and CrIS. The CrIS-derived OLR is then validated by using a limited set of available CERES SNPP OLR observations over 1° × 1° global grids, as well as monthly OLR mean and interannual differences against CERES OLR datasets from SNPP and Aqua. The results show that the bias of global CrIS OLR estimation is within ±2 W m−2 and that the standard deviation is within 5 W m−2 for all conditions, and ±1 and 3 W m−2 for homogeneous scenes. The interannual CrIS-derived OLR differences agree well with Aqua CERES interannual OLR differences on a 1° × 1° spatial scale, with only a small drift of the global mean of these two datasets of around 0.004 W m−2.

Funder

JPSS

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3