Validation of Near-Real-Time NOAA-20 CrIS Outgoing Longwave Radiation with Multi-Satellite Datasets on Broad Timescales

Author:

Wang Tianyuan,Zhou LihangORCID,Tan Changyi,Divakarla Murty,Pryor KenORCID,Warner Juying,Wei Zigang,Goldberg Mitch,Nalli Nicholas R.ORCID

Abstract

The Outgoing Longwave Radiation (OLR) package was first developed as a stand-alone application, and then integrated into the National Oceanic and Atmospheric Administration (NOAA) Unique Combined Atmospheric Processing System (NUCAPS) hyperspectral sounding retrieval system. An objective of this package is to provide near-real-time OLR products derived from the Cross Track Infrared Sounder (CrIS) onboard the Joint Polar Satellite System (JPSS) satellites. It was initially developed and validated with CrIS onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite, and has been expanded to JPSS-1 (renamed NOAA-20 after launch) datasets that are currently available to the public. In this paper, we provide the results of detailed validation tests with NOAA-20 CrIS for large and wide representative conditions at a global scale. In our validation tests, the observations from Clouds and Earth’s Radiant Energy System (CERES) on Aqua were treated as the absolute reference or “truth”, and those from SNPP CrIS OLR were used as the transfer standard. The tests were performed on a 1°×1° global spatial grid over daily, monthly, and yearly timescales. We find that the CrIS OLR products from NOAA-20 agree exceptionally well with those from Aqua CERES and SNPP CrIS OLR products in all conditions: the daily bias is within ±0.6 Wm−2, and the standard deviation (STD) ranges from 4.88 to 9.1 Wm−2. The bias and the STD of OLR monthly mean are better, within 0.3 and 2.0 Wm−2, respectively. These findings demonstrate the consistency between NOAA-20 and SNPP CrIS OLR up to annual scales, and the robustness of NUCAPS CrIS OLR products.

Funder

NOAA Joint Polar Satellite System (JPSS-STAR) Office

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3