Use of Radar Quantitative Precipitation Estimates (QPEs) for Improved Hydrological Model Calibration and Flood Forecasting

Author:

Wijayarathne Dayal1,Coulibaly Paulin2,Boodoo Sudesh3,Sills David4

Affiliation:

1. 1 School of Earth, Environment & Society, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L8, Canada. (wijayard@mcmaster.ca)

2. 2 Department of Civil Engineering, and 1School of Earth, Environment & Society, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada (couliba@mcmaster.ca)

3. 3 Cloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, 14780 Jane St., King City, ON L7B 1A3, Canada. (sudesh.boodoo@canada.ca)

4. 4 Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada. (david.sills@uwo.ca)

Abstract

AbstractFlood forecasting is essential to minimize the impacts and costs of floods, especially in urbanized watersheds. Radar rainfall estimates are becoming increasingly popular in flood forecasting because they provide the much-needed real-time spatially distributed precipitation information. The current study evaluates the use of radar Quantitative Precipitation Estimates (QPEs) in hydrological model calibration for streamflow simulation and flood mapping in an urban setting. Firstly, S-band and C-band radar QPEs were integrated into event-based hydrological models to improve the calibration of model parameters. Then, rain gauge and radar precipitation estimates’ performances were compared for hydrological modeling in an urban watershed to assess radar QPE's effects on streamflow simulation accuracy. Finally, flood extent maps were produced using coupled hydrological-hydraulic models integrated within the Hydrologic Engineering Center- Real-Time Simulation (HEC-RTS) framework. It is shown that the bias correction of radar QPEs can enhance the hydrological model calibration. The radar-gauge merging obtained a KGE, MPFC, NSE, and VE improvement of about + 0.42, + 0.12, + 0.78, and − 0.23, respectively for S-band and + 0.64, + 0.36, + 1.12, and − 0.34, respectively for C-band radar QPEs. Merged radar QPEs are also helpful in running hydrological models calibrated using gauge data. The HEC-RTS framework can be used to produce flood forecast maps using the bias-corrected radar QPEs. Therefore, radar rainfall estimates could be efficiently used to forecast floods in urbanized areas for effective flood management and mitigation. Canadian flood forecasting systems could be efficiently updated by integrating bias-corrected radar QPEs to simulate streamflow and produce flood inundation maps.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3