Comparison of Floods Driven by Tropical Cyclones and Monsoons in the Southeastern Coastal Region of China

Author:

Lu Weiwei1,Lei Huimin1,Yang Wencong1,Yang Jingjing1,Yang Dawen1

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Abstract

AbstractIncreasing evidence indicates that changes have occurred in heavy precipitation associated with tropical cyclone (TC) and local monsoon (non-TC) systems in the southeastern coastal region of China over recent decades. This leads to the following questions: what are the differences between TC and non-TC flooding, and how do TC and non-TC flooding events change over time? We applied an identification procedure for TC and non-TC floods by linking flooding to rainfall. This method identified TC and non-TC rainfall–flood events by the TC rainfall ratio (percentage of TC rainfall to total rainfall for rainfall–flood events). Our results indicated that 1) the TC rainfall–flood events presented a faster runoff generation process associated with larger flood peaks and rainfall intensities but smaller rainfall volumes, compared to that of non-TC rainfall–flood events, and 2) the magnitude of TC floods exhibited a decreasing trend, similar to the trend in the amount and frequency of TC extreme precipitation. However, the frequency of TC floods did not present obvious changes. In addition, non-TC floods decreased in magnitude and frequency while non-TC extreme precipitation showed an increase. Our results identified significantly different characteristics between TC and non-TC flood events, thus emphasizing the importance of considering different mechanisms of floods to explore the physical drivers of runoff response. Also, our results indicated that significant decreases occurred in the magnitude, but not the frequency, of floods induced by TC from the western North Pacific, which is the most active ocean basin for TC activity, and thus can provide useful information for future studies on the global pattern of TC-induced flooding.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3