Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data

Author:

Xie JingkaiORCID,Xu Yue-PingORCID,Yu Hongjie,Huang Yan,Guo Yuxue

Abstract

Abstract. Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-on (GRACE-FO) satellite provide terrestrial water storage anomaly (TWSA) estimates globally that can be used to monitor flood in various regions at monthly intervals. However, the coarse temporal resolution of GRACE and GRACE-FO satellite data has been limiting their applications at finer temporal scales. In this study, TWSA estimates have been reconstructed and then temporally downscaled into daily values based on three different learning-based models, namely a multi-layer perceptron (MLP) model, a long-short term memory (LSTM) model and a multiple linear regression (MLR) model. Furthermore, a new index incorporating temporally downscaled TWSA estimates combined with daily average precipitation anomalies is proposed to monitor the severe flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The results indicated that (1) the MLP model shows the best performance in reconstructing the monthly TWSA with root mean square error (RMSE) = 10.9 mm per month and Nash–Sutcliffe efficiency (NSE) = 0.89 during the validation period; (2) the MLP model can be useful in temporally downscaling monthly TWSA estimates into daily values; (3) the proposed normalized daily flood potential index (NDFPI) facilitates robust and reliable characterization of severe flood events at sub-monthly timescales; (4) the flood events can be monitored by the proposed NDFPI earlier than traditional streamflow observations with respect to the YRB and its individual subbasins. All these findings can provide new opportunities for applying GRACE and GRACE-FO satellite data to investigations of sub-monthly signals and have important implications for flood hazard prevention and mitigation in the study region.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3