Evaluation of Radar Quantitative Precipitation Estimates (QPEs) as an Input of Hydrological Models for Hydrometeorological Applications

Author:

Wijayarathne Dayal1,Boodoo Sudesh2,Coulibaly Paulin3,Sills David4

Affiliation:

1. School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada

2. Cloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, King City, Ontario, Canada

3. Department of Civil Engineering, and School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada

4. Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario, Canada

Abstract

AbstractWeather radar provides real-time, spatially distributed precipitation estimates, whereas traditional gauge data are restricted in space. The use of radar quantitative precipitation estimates (QPEs) as an input of hydrological models for hydrometeorological applications has increased with the development of weather radar worldwide. New dual-polarization technology and algorithms are showing improvements to radar QPEs. This study evaluates radar QPEs from C-band radar at King City, Canada (WKR), and NEXRAD S-band radar at Buffalo, New York (KBUF), to verify the reliability and accuracy for operational use in the Humber River (semiurban) and Don River (urban) watersheds in the Greater Toronto Area (GTA), Canada. Twenty rainfall events that occurred from 2011 to 2017 were determined from hourly gauge measurements and compared with nine radar QPEs. Rain rates were estimated with different algorithms using three dual-polarized reflectivity values: horizontal reflectivity Z, differential reflectivity ZDR, and specific differential phase KDP. The correlation coefficient, bias, detection, and root-mean-square error were calculated and averaged over all events for each gauge station to show the spatial distribution and in a similar pattern to represent the variation by the event. The quality of the results in terms of accuracy and reliability indicates that the radar QPEs from KBUF S-band and WKR C-band multiparameter rain rate estimators can be effectively used as precipitation forcing of hydrological models for hydrometeorological applications. The high spatiotemporal resolution, long-term data archive, and good percent detection of radar QPEs can facilitate hydrometeorological applications by providing a continuous time series for hydrological models.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3