Investigation of a non-linear complementary relationship model for monthly evapotranspiration estimation at global flux sites

Author:

Gan Guojing12,Liu Yuanbo1,Chen Dongxu3,Zheng Chaolei4

Affiliation:

1. 1 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

2. 2 Key Laboratory of Watershed Geographic Sciences, Chinese Academy of Sciences, Nanjing 210008, China

3. 3 Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

4. 4 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Abstract

AbstractProper parameterization of the parameter (αe) that governs the wet environment evaporation is critical for the regional estimation of evapotranspiration (ET) using the generalized complementary relationship (GCR) model. Here, we proposed a global parameterization for the GCR model. We found that the GCR model is sensitive to the parameter αe, which varies spatially with the climate aridity index (AI, the ratio between the apparent potential ET and the precipitation) across 60 sites that span a large variety in climate types worldwide. We found that αe and the AI are generally more strongly correlated in drier climates (AI > 2) where water supply instead of energy supply is the limiting factor for actual ET. The strong correlation between αe and AI can be partly explained by 1) the usage of the air temperature measurements in the non-potential conditions instead of potential conditions, and 2) the insensitivity of the actual ET to the apparent potential ET in the drier climate. Temporally, the parameter αe exhibits seasonal courses at monthly scales and decreases with increasing of vapor pressure deficit (VPD) in a hysteresis loop. Incorporation of the seasonal course and hysteresis significantly improved the model performances at most of the sites. The global parameterization we established can help the GCR model to be a more useful tool for regional and global ET estimations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3