The Inland Maintenance and Re-intensification of Tropical Storm Bill (2015) Part 2: Precipitation Microphysics

Author:

Brauer Noah S.1,Basara Jeffrey B.2,Kirstetter Pierre E.3,Wakefield Ryann A.4,Homeyer Cameron R.5,Yoo Jinwoong6,Shepherd Marshall7,Santanello Joseph. A.8

Affiliation:

1. University of Oklahoma, School of Meteorology, Advanced Radar Research Center, Norman, Oklahoma

2. University of Oklahoma, School of Meteorology, School of Civil Engineering and Environmental Science, Norman, Oklahoma, USA

3. University of Oklahoma, School of Meteorology, Advanced Radar Research Center, NOAA, National Severe Storms Laboratory, Norman, Oklahoma

4. University of Oklahoma, School of Meteorology, Norman, Oklahoma, USA

5. University of Oklahoma, School of Meteorology, Norman, Oklahoma

6. University of Maryland (ESSIC), NASA Goddard Space Flight Center

7. University of Georgia, Department of Geography

8. NASA Goddard Space Flight Center

Abstract

AbstractTropical Storm Bill produced over 400 mmof rainfall to portions of southern Oklahoma from 16-20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as ZH, ZDR, KDP, and ρhv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision-coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision-coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3