Precipitation Microphysics of Locally-Originated Typhoons in the South China Sea Based on GPM Satellite Observations

Author:

Huang Xingtao1,Wu Zuhang1ORCID,Xie Yanqiong1,Zhang Yun1,Zhang Lifeng1,Zheng Hepeng1,Xiao Wupeng1

Affiliation:

1. Department of Atmosphere Science and Engineering, College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

Abstract

Locally-originated typhoons in the South China Sea (SCS) are characterized by long duration, complex track, and high probability of landfall, which tend to cause severe wind, rainstorm, and flood disasters in coastal regions. Therefore, it is of great significance to conduct research on typhoon precipitation microphysics in the SCS. Using GPM satellite observations, the precipitation microphysics of typhoons in the SCS are analyzed by combining case and statistical studies. The precipitation of Typhoon Ewiniar (2018) in the SCS is found to be highly asymmetric. In the eyewall, the updraft is strong, the coalescence process of particles is distinct, and the precipitation is mainly concentrated in large raindrops. In the outer rainbands, the “bright-band” of melting layer is distinct, the melting of ice particles and the evaporation of raindrops are distinct, and there exist a few large raindrops in the precipitation. Overall, the heavy precipitation of typhoons in the SCS is composed of higher concentration of smaller raindrops than that in the western Pacific (WP), leading to a more “oceanic deep convective” feature of typhoons in the SCS. While the heavy precipitation of typhoons in the SCS is both larger in drop size and number concentration than that in the North Indian Ocean (NIO), leading to more abundant rainwater of typhoons in the SCS. For the relatively weak precipitation (R < 10 mm h−1), the liquid water path (LWP) of typhoons in the SCS is higher than that of the NIO, while the ice water path (IWP) of the locally-originated typhoons in the SCS is lower than that of the WP. For the heavy precipitation (R ≥ 10 mm h−1), the LWP and IWP of typhoons in the SCS are significantly higher than those in the WP and NIO.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3