Groundwater Recharge Estimated by Land Surface Models: An Evaluation in the Conterminous United States

Author:

Li Bailing12,Rodell Matthew2,Peters-Lidard Christa2,Erlingis Jessica12,Kumar Sujay2,Mocko David23

Affiliation:

1. a ESSIC, University of Maryland, College Park, College Park, Maryland

2. b NASA Goddard Space Flight Center, Greenbelt, Maryland

3. c Science Applications International Corporation, Greenbelt, Maryland

Abstract

AbstractEstimating diffuse recharge of precipitation is fundamental to assessing groundwater sustainability. Diffuse recharge is also the process through which climate and climate change directly affect groundwater. In this study, we evaluated diffuse recharge over the conterminous United States simulated by a suite of land surface models (LSMs) that were forced using a common set of meteorological input data. Simulated annual recharge exhibited spatial patterns that were similar among the LSMs, with the highest values in the eastern United States and Pacific Northwest. However, the magnitudes of annual recharge varied significantly among the models and were associated with differences in simulated ET, runoff, and snow. Evaluation against two independent datasets did not answer the question of whether the ensemble mean performs the best, due to inconsistency between those datasets. The amplitude and timing of seasonal maximum recharge differed among the models, influenced strongly by model physics governing deep soil moisture drainage rates and, in cold regions, snowmelt. Evaluation using in situ soil moisture observations suggested that true recharge peaks 1–3 months later than simulated recharge, indicating systematic biases in simulating deep soil moisture. However, recharge from lateral flows and through preferential flows cannot be inferred from soil moisture data, and the seasonal cycle of simulated groundwater storage actually compared well with in situ groundwater observations. Long-term trends in recharge were not consistently correlated with either precipitation trends or temperature trends. This study highlights the need to employ dynamic flow models in LSMs, among other improvements, to enable more accurate simulation of recharge.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3