Performance of three reanalyses in simulating the water table elevation in different shallow unconfined aquifers in Central Italy

Author:

Cerlini Paolina Bongioannini1ORCID,Silvestri Lorenzo12ORCID,Meniconi Silvia12ORCID,Brunone Bruno12ORCID

Affiliation:

1. CIRIAF/Centre for Climate and Climate Change University of Perugia Perugia Italy

2. Department of Civil and Environmental Engineering University of Perugia Perugia Italy

Abstract

AbstractWater table elevation is a key feature for identifying the groundwater behaviour. Accordingly, appropriate measurements—in terms of both frequency and spatial distribution—play a crucial role for capturing the aquifer response to recharge and withdrawals. However, numerical models simulating the main features of the behaviour of the water table elevation may help groundwater management, as an additional tool. In this article, soil moisture data from three well‐established global reanalyses (ERA5, CFS, and JRA‐55) are used for evaluating the flux in the vadose zone towards shallow unconfined aquifers, , in the Umbria region (central Italy). Then, according to the methodology proposed in Bongioannini Cerlini et al. (2021), where for the considered aquifers most of the recharge derives from the unsaturated zone, is used for simulating the water table evolution in time. With the aim of assessing which reanalysis is the most appropriate in simulating the evolution of groundwater levels, the properties of the correspondent land surface models (LSM) are examined, as they provide . For the considered aquifers, the analysis of the performance of the selected reanalyses confirms the validity of the proposed approach. Moreover, it points out the crucial role of the spreading of the water table elevation with respect to its mean value, as a significant parameter for selecting the most adequate reanalysis to use. In addition, the role in the LSM of the explored soil depth, hydraulic conductivity curve, and spatial resolution is highlighted. These results, in line with recent literature on the performance of the reanalyses, suggest to extend future work to other regions of the world.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3