Radiative Flux Estimation from a Broadband Radiometer Using Synthetic Angular Models in the EarthCARE Mission Framework. Part I: Methodology

Author:

Domenech Carlos,Lopez-Baeza Ernesto,Donovan David P.,Wehr Tobias

Abstract

AbstractThe forthcoming broadband radiometer (BBR) on board the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) will provide quasi-instantaneous top-of-atmosphere radiance measurements for three different viewing angles. The role of BBR data will be to constrain the vertical radiative flux divergence profiles derived from EarthCARE measurements. Thus, the development of an instantaneous radiance-to-flux conversion procedure is of paramount importance. This paper studies the scientific basis for determining fluxes from radiances measured by the BBR instrument. This is an attempt to evaluate a possible solution and assess its potential advantages and drawbacks. The approach considered has been to construct theoretical angular distribution models (ADMs) based on the multiangular pointing feature of this instrument. This configuration provides extra information on the anisotropy of the observed radiance field, which can be employed to construct accurate inversion schemes. The proposal relies on radiative transfer calculations performed with a Monte Carlo algorithm. Considering the intrinsic difficulty associated with addressing the range of atmospheric conditions needed to determine reliable ADMs, a synthetic database has been thoroughly constructed that considers a diverse range of surface, atmospheric, and cloud conditions that are conditioned to the EarthCARE orbit and physical constraints. Three inversion methodologies have been specifically designed for the BBR flux retrieval algorithm. In particular, an optimized classical inversion procedure in which the definition of an effective radiance leads to derive fluxes with averaged errors up to 1.2 and 5.2 W m−2 for shortwave clear and cloudy sky and 1.5 W m−2 for longwave radiation scenes and a linear combination of the three instantaneous radiances from which averaged errors up to 0.4 and 2.7 W m−2 for shortwave clear and cloudy sky and 0.5 W m−2 for longwave scenes can be obtained.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3