Radiative Flux Estimation from a Broadband Radiometer Using Synthetic Angular Models in the EarthCARE Mission Framework. Part II: Evaluation

Author:

Domenech Carlos,Lopez-Baeza Ernesto,Donovan David P.,Wehr Tobias

Abstract

AbstractThe instantaneous top-of-atmosphere (TOA) radiance-to-flux conversion for the broadband radiometer (BBR) on board the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) was assessed in Part I of this paper, by developing theoretical angular distribution models (ADMs) specifically designed for the instrument viewing configuration. This paper validates the BBR ADMs by comparing derived flux estimates with flux retrievals obtained from the Clouds and the Earth’s Radiant Energy System (CERES) Terra models. A CERES BBR-like database is employed in the assessment, which is an optimum dataset to validate the BBR algorithms and to determine the benefits of the multiangular conversion procedures in the BBR instrument. The validation of theoretical results with empirical data is essential to prepare the conversion algorithms prior to the launch of EarthCARE. This paper demonstrates that the application of a linear combination method is not recommended when outgoing radiances do not follow the response modeled in the radiative transfer calculations. An effective radiance averaged model outperforms all other developed models, in terms of the coefficient of variation of the root-mean-square error, in the validation study of the shortwave (SW) regime (clear sky 1.9%; cloudy 7.1%) while an effective radiance along-track model obtains the best comparisons for the longwave (LW) regime (clear sky 1.4%; cloudy 1.5%). The evaluation of the multiangular models with scenes with high anisotropy shows that multiview flux conversion algorithms can statistically improve CERES ADM results when CERES flux discrepancies of a target are higher than 4 W m−2 in the LW domain and SW clear-sky scenes and higher than 20 W m−2 in scenes with cloudy conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3