The Impact of Convective Momentum Transport on Tropical Cyclone Track Forecasts Using the Emanuel Cumulus Parameterization

Author:

Hogan Timothy F.1,Pauley Randal L.2

Affiliation:

1. Marine Meteorology Division, Naval Research Laboratory, Monterey, California

2. Fleet Numerical Meteorology and Oceanography Center, Monterey, California

Abstract

Abstract The influence of convective momentum transport (CMT) on tropical cyclone (TC) track forecasts is examined in the Navy Operational Global Atmospheric Prediction System (NOGAPS) with the Emanuel cumulus parameterization. Data assimilation and medium-range forecast experiments show that for 35 tropical cyclones during August and September 2004 the inclusion of CMT in the cumulus parameterization significantly improves the TC track forecasts. The tests show that the track forecasts are very sensitive to the magnitude of the Emanuel parameterization’s convective momentum transport parameter, which controls the CMT tendency returned by the parameterization. While the overall effect of this formulation of CMT in NOGAPS data assimilation/medium-range forecasts results in the surface pressure of tropical cyclones being less intense (and more consistent with the analysis), the parameterization is not equivalent to a simple diffusion of winds in the presence of convection. This is demonstrated by two data assimilation/medium-range forecast tests in which a vertical diffusion algorithm replaces the CMT. Two additional data assimilation/medium-range forecast experiments were conducted to test whether the skill increase primarily comes from the CMT in the immediate vicinity of the tropical cyclones. The results show that the inclusion of the CMT calculation in the vicinity of the TC makes the largest contribution to the increase in forecast skill, but the general contribution of CMT away from the TC also plays an important role.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference27 articles.

1. The cumulus parameterization problem: Past, present, and future.;Arakawa;J. Climate,2004

2. Arakawa, A., and M-D.Cheng, 1993: The Arakawa–Schubert cumulus parameterization. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 123–136.

3. AMSUA-A radiance for U.S. Navy.;Baker;Bull. Amer. Meteor. Soc.,2005

4. A new convective adjustment scheme. II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass datasets.;Betts;Quart. J. Roy. Meteor. Soc.,1986

5. Convective momentum transport over the tropical Pacific: Budget estimates.;Carr;J. Atmos. Sci.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3