Corrected TOGA COARE Sounding Humidity Data: Impact on Diagnosed Properties of Convection and Climate over the Warm Pool

Author:

Ciesielski Paul E.1,Johnson Richard H.1,Haertel Patrick T.2,Wang Junhong3

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. CIRES, University of Colorado, NOAA Aeronomy Laboratory, Boulder, Colorado

3. NCAR/ATD, Boulder, Colorado

Abstract

Abstract This study reports on the humidity corrections in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE) upper-air sounding dataset and their impact on diagnosed properties of convection and climate over the warm pool. During COARE, sounding data were collected from 29 sites with Vaisala-manufactured systems and 13 sites with VIZ-manufactured systems. A recent publication has documented the characteristics of the humidity errors at the Vaisala sites and a procedure to correct them. This study extends that work by describing the nature of the VIZ humidity errors and their correction scheme. The corrections, which are largest in lower-tropospheric levels, generally increase the moisture in the Vaisala sondes and decrease it in the VIZ sondes. Use of the corrected humidity data gives a much different perspective on the characteristics of convection during COARE. For example, application of a simple cloud model shows that the peak in convective mass flux shifts from about 8°N with the uncorrected data to just south of the equator with corrected data, which agrees better with the diagnosed vertical motion and observed rainfall. Also, with uncorrected data the difference in mean convective available potential energy (CAPE) between Vaisala and VIZ sites is over 700 J kg−1; with the correction, both CAPEs are around ∼1300 J kg−1, which is consistent with a generally uniform warm pool SST field. These results suggest that the intensity and location of convection would differ significantly in model simulations with humidity-corrected data, and that the difficulties which the reanalysis products had in reproducing the observed rainfall during COARE may be due to the sonde humidity biases. The humidity-corrected data appear to have a beneficial impact on budget-derived estimates of rainfall and radiative heating rate, such that revised estimates show better agreement with those from independent sources.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3