Climate Model Forecast Experiments for TOGA COARE

Author:

Boyle J.1,Klein S.1,Zhang G.2,Xie S.1,Wei X.3

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, California

2. Scripps Institute of Oceanography, La Jolla, California

3. University of Colorado and NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract Short-term (1–10 day) forecasts are made with climate models to assess the parameterizations of the physical processes. The time period for the integrations is that of the intensive observing period (IOP) of the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The models used are the National Center for Atmospheric Research (NCAR) Community Climate Model, version 3.1 (CAM3.1); CAM3.1 with a modified deep convection parameterization; and the Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model, version 2 (AM2). The models were initialized using the state variables from the 40-yr ECMWF Re-Analysis (ERA-40). The CAM deep convective parameterization fails to demonstrate the sensitivity to the imposed forcing to simulate precipitation patterns associated with the Madden–Julian oscillations (MJOs) present during the period. AM2 and modified CAM3.1 exhibit greater correspondence to the observations at the TOGA COARE site, suggesting that convective parameterizations that have some type of limiter (as do AM2 and the modified CAM3.1) simulate the MJO rainfall with more fidelity than those without. None of the models are able to fully capture the correct phasing of westerly wind bursts with respect to precipitation in the eastward-moving MJO disturbance. Better representation of the diabatic heating and effective static stability profiles is associated with a better MJO simulation. Because the models’ errors in the forecast mode bear a resemblance to the errors in the climate mode in simulating the MJO, the forecasts may allow for a better way to dissect the reasons for model error.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. Transition between supressed and active phases of intraseasonal oscillations in the Indo-Pacific warm pool.;Agudelo;J. Climate,2006

2. Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool.;Ciesielski;J. Climate,2003

3. Collins, W. D. , and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, Boulder, CO, 214 pp.

4. The impact of a digital filter finalization technique in a global data assimilation system.;Fillion;Tellus,1995

5. The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations.;GFDL Global Atmospheric Model Development Team;J. Climate,2004

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3