Can a Descending Rain Curtain in a Supercell Instigate Tornadogenesis Barotropically?

Author:

Davies-Jones Robert1

Affiliation:

1. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract This paper investigates whether the descending rain curtain associated with the hook echo of a supercell can instigate a tornado through a purely barotropic mechanism. A simple numerical model of a mesocyclone is constructed in order to rule out other tornadogenesis mechanisms in the simulations. The flow is axisymmetric and Boussinesq with constant eddy viscosity in a neutrally stratified environment. The domain is closed to avoid artificial decoupling of a vortex from the storm-scale circulation. In the principal simulation, the initial condition is a balanced, slowly decaying, Beltrami flow describing an updraft that is rotating cyclonically at midlevels around a low pressure center surrounded by a concentric downdraft that revolves cyclonically but has anticyclonic vorticity. The boundary conditions are no slip on the tangential wind and free slip on the radial or vertical wind to accommodate this initial condition and to allow strong interaction of a vortex with the ground. Precipitation is released through the top above the updraft and falls to the ground near the updraft–downdraft interface in an annular curtain. The downdraft enhancement induced by the precipitation drag upsets the balance of the Beltrami flow. The downdraft and its outflow toward the axis increase low-level convergence beneath the updraft and transport air with moderately high angular momentum downward and inward where it is entrained and stretched by the updraft. The resulting tornado has a corner region with an intense axial jet and low pressure capped by a vortex breakdown and a transition to a broader vortex aloft (a tornado cyclone). A clear slot of subsiding air with anticyclonic vorticity surrounds the vortex. The vertical kinetic energy of the entire circulation declines dramatically prior to tornado formation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference66 articles.

1. A numerical simulation of cyclic mesocyclogenesis.;Adlerman;J. Atmos. Sci.,1999

2. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I.;Arakawa;J. Comput. Phys.,1966

3. Vectors, Tensors, and the Basic Equations of Fluid Mechanics.;Aris,1962

4. Cloud physics—1974.;Braham;Bull. Amer. Meteor. Soc.,1974

5. Das, P. , 1983: Vorticity concentration in the subcloud layers of a rotating cloud. National Science Foundation Final Rep. ATM-8023825, 78 pp.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3