Affiliation:
1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
Abstract
Abstract
This paper presents two-dimensional (2D) idealized simulations at 1-km grid spacing using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) in order to illustrate how a series of ridges along a broad windward slope can impact the precipitation distribution and simulated microphysics. The number of windward ridges for a 2000-m mountain of 50-km half-width is varied from 0 to 16 over a 150-km distance using different stratifications, freezing levels, uniform ambient flows, and ridge amplitudes.
A few (200–400 m) windward ridges can enhance the precipitation locally over each ridge crest by a factor of 2–3. Meanwhile, a series of 8–16 ridges that are 200–400 m in height can increase the net precipitation averaged over the windward slope by 10%–35%. This average precipitation enhancement is maximized when the ridge spacing is relatively small (<20 km), since there is less time for subsidence drying within the valleys and the mountain waves become more evanescent, which favors a simple upward and downward motion couplet over each ridge. In addition, small ridge spacing is shown to have a synergistic effect on precipitation over the lower windward slope, in which an upstream ridge helps increase the precipitation over the adjacent downwind ridge. There is little net precipitation enhancement by the ridges for small moist Froude numbers (Fr < 0.8), since flow blocking limits the flow up and over each ridge. For a series of narrow ridges (∼10 km wide), the largest precipitation enhancement for a 500-mb freezing level occurs over lower windward slope of the barrier through warm-rain processes. In contrast, a 1000-mb freezing level has the largest precipitation enhancement over the middle and upper portions of a barrier for a series of narrow (∼10 km wide) ridges given the horizontal advection of snow aloft.
Publisher
American Meteorological Society
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献