A Modeling Study of Rainbands Upstream from Western Japan during the Approach of Typhoon Tokage (2004)

Author:

Wang Chung-Chieh,Lin Tzu-Chun,Tsuboki Kazuhisa,Tsai Yu-Ming,Lee Dong-In

Abstract

During 19–20 October 2004, a series of spectacular arc-shaped rainbands developed south or southeast of southwestern Japan when Typhoon Tokage (TY0423) approached the region from the southwest. As the typhoon moved closer and the upstream Froude number (Fr) continued to increase, these rainbands first remained quasi-stationary but eventually retreated backward. Using the Nagoya University Cloud-Resolving Storm Simulator (CReSS) at 1-km grid size, these rainbands were successfully simulated, and their behavior during the transition period from a relatively low-Fr to a high-Fr regime was investigated and compared with idealized two-dimensional (2D) model results from theoretical studies. In the present case, the rainbands were found to develop along a low-level frontal convergence zone between the southerly flow associated with the typhoon and the northerly flow from the Sea of Japan. The northeasterly winds accelerated through gaps between topography and fed the offshore flow at the backside of the rainbands, producing a strong resistance that allowed the rainbands to remain stationary under significantly higher Fr values (at least 1.2) than predicted by 2D simulations (of about 0.3–0.5) for the retreat to occur in conditionally unstable flow with a convective available potential energy of about 1300 J kg−1. Typically ≤ 500 m in depth with a potential temperature (θ) deficit of 2–4 K across the rainband, the cooler offshore flow was also found to be enhanced by evaporative cooling as in some other events. The cooling effect helped the rainbands to hold their position until Fr of the upstream flow became too large, and the rainband with stronger cooling behind was able to withstand a higher Fr before retreat. Once the retreat started, the offshore layer became thinner and the θ deficit also reduced, and the rainbands were washed back by the strengthening upcoming flow.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference64 articles.

1. The influence of mountains on the atmosphere;Smith;Adv. Geophys.,1979

2. A Theory for Strong, Long-Lived Squall Lines

3. On the Dynamics of Hawaiian Cloud Bands: Island Forcing

4. Organization of Clouds and Precipitation in Extratropical Cyclones;Browning,1990

5. Cloud Dynamics;Houze,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3