Interannual Variability of the Western North Pacific Summer Monsoon: Differences between ENSO and Non-ENSO Years

Author:

Chou Chia1,Tu Jien-Yi2,Yu Jia-Yuh2

Affiliation:

1. Environmental Change Research Center, Academia Sinica, Taipei, Taiwan

2. Department of Atmospheric Sciences, Chinese Culture University, Yang-Ming Shan, Taipei, Taiwan

Abstract

Abstract The interannual variability of the western North Pacific (WNP) summer monsoon is examined for the non-ENSO, ENSO developing, and ENSO decaying years, respectively. The ENSO developing (decaying) year is defined as the year before (after) the mature phase of ENSO, and the non-ENSO year is defined as the year that is neither the ENSO developing year nor the ENSO decaying year. A strong (weak) WNP summer monsoon tends to occur during the El Niño (La Niña) developing year and a weak (strong) WNP summer monsoon tends to occur during the El Niño (La Niña) decaying year. In all non-ENSO, ENSO developing, and ENSO decaying years, the strong (weak) WNP summer monsoon is associated with the positive (negative) rainfall anomalies, cold (warm) sea surface temperature anomalies, warm (cold) upper-tropospheric temperature anomalies, low (high) surface pressure anomalies, and a low-level cyclonic (anticyclonic) circulation anomaly over the subtropical WNP. The 850-hPa wave train associated with the WNP and east Asian (EA) summer monsoons in the non-ENSO, ENSO developing, and ENSO decaying years extends northward and suggests a possible teleconnection between the WNP summer monsoon and the North American climate. The wave train extended into the Southern Hemisphere in the non-ENSO and ENSO developing years implies a teleconnection between the WNP summer monsoon and the Australian winter climate. The anomalous WNP monsoon in the non-ENSO and ENSO developing years exists only in summer, while the anomalous WNP monsoon in the ENSO decaying year persists from the beginning of the year to the summer season. The anomalous WNP summer monsoon exhibits a strong ocean–atmosphere interaction, especially in the ENSO decaying year. This study suggests that the anomalous WNP summer monsoon in the non-ENSO year is associated with the variation of the meridional temperature gradient in the upper troposphere, while the anomalous WNP summer monsoon in the ENSO developing and decaying years is associated with ENSO-related SST anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3