Interhemispheric Temperature Gradient and Equatorial Pacific SSTs Drive Sahel Monsoon Uncertainties under Global Warming

Author:

Guilbert Marcellin1,Terray Pascal1,Mignot Juliette1,Ollier Luther1,Gastineau Guillaume1

Affiliation:

1. a Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

Abstract

Abstract The Sahel is one of the most vulnerable regions to climate change. Robust estimation of future changes in the Sahel monsoon is therefore essential for effective climate change adaptation. Unfortunately, state-of-the-art climate models show large uncertainties in their projections of Sahel rainfall. In this study, we use 32 models from CMIP6 to identify the sources of this large intermodel spread of Sahel rainfall. By using maximum covariance analysis, we first highlight two new key drivers of this spread during boreal summer: the interhemispheric temperature gradient and equatorial Pacific sea surface temperature (SST) changes. This contrasts with previous studies, which have focused mainly on the Northern Hemisphere rather than the global scale, and in which the Pacific Ocean has been neglected in favor of the Atlantic. Next, we unravel the physical mechanisms behind these statistical relationships. First, the modulation of the interhemispheric temperature gradient across the models leads to varying latitudinal positions of the intertropical convergence zone and, consequently, varying Sahel rainfall intensity. Second, models that exhibit less warming than the multimodel mean in the equatorial Pacific, thereby projecting a less “El Niño–like” mean state, simulate enhanced precipitation over the central Sahel in the future through modulations of the Walker circulation, the tropical easterly jet, the meridional tropospheric temperature gradient, and hence regional zonal wind shear. Finally, we show that these two indices collectively explain 62% of Sahel rainfall change uncertainty: 40% due to the interhemispheric temperature gradient and 22% through equatorial Pacific SST.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference104 articles.

1. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present);Adler, R. F.,2003

2. Ensemble-based CMIP5 simulations of West African summer monsoon rainfall: Current climate and future changes;Akinsanola, A. A.,2019

3. Projected change in temperature and precipitation over Africa from CMIP6;Almazroui, M.,2020

4. The dominance analysis approach for comparing predictors in multiple regression;Azen, R.,2003

5. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response;Bellomo, K.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3