Meteorological Model Evaluation for CalNex 2010

Author:

Angevine Wayne M.1,Eddington Lee2,Durkee Kevin3,Fairall Chris4,Bianco Laura1,Brioude Jerome1

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

2. Geophysics Branch, Naval Air Warfare Center Weapons Division, Point Mugu, California

3. South Coast Air Quality Management District, Diamond Bar, California

4. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract The performance of mesoscale meteorological models is evaluated for the coastal zone and Los Angeles area of Southern California, and for the San Joaquin Valley. Several configurations of the Weather Research and Forecasting Model (WRF) with differing grid spacing, initialization, planetary boundary layer (PBL) physics, and land surface models are compared. One configuration of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model is also included, providing results from an independent development and process flow. Specific phenomena of interest for air quality studies are examined. All model configurations are biased toward higher wind speeds than observed. The diurnal cycle of wind direction and speed (land–sea-breeze cycle) as modeled and observed by a wind profiler at Los Angeles International Airport is examined. Each of the models shows different flaws in the cycle. Soundings from San Nicolas Island, a case study involving the Research Vessel (R/V) Atlantis and the NOAA P3 aircraft, and satellite images are used to evaluate simulation performance for cloudy boundary layers. In a case study, the boundary layer structure over the water is poorly simulated by all of the WRF configurations except one with the total energy–mass flux boundary layer scheme and ECMWF reanalysis. The original WRF configuration had a substantial bias toward low PBL heights in the San Joaquin Valley, which are improved in the final configuration. WRF runs with 12-km grids have larger errors in wind speed and direction than those present in the 4-km grid runs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3