Affiliation:
1. National Center for Atmospheric Research,* Boulder, Colorado
Abstract
Abstract
The major goal of this two-part study is to assimilate radar data into the high-resolution Advanced Research Weather Research and Forecasting Model (ARW-WRF) for the improvement of short-term quantitative precipitation forecasting (QPF) using a four-dimensional variational data assimilation (4D-Var) technique. In Part I the development of a radar data assimilation scheme within the WRF 4D-Var system (WRF 4D-Var) and the preliminary testing of the scheme are described. In Part II the performance of the enhanced WRF 4D-Var system is examined by comparing it with the three-dimensional variational data assimilation system (WRF 3D-Var) for a convective system over the U.S. Great Plains. The WRF 4D-Var radar data assimilation system has been developed with the existing framework of an incremental formulation. The new development for radar data assimilation includes the tangent-linear and adjoint models of a Kessler warm-rain microphysics scheme and the new control variables of cloud water, rainwater, and vertical velocity and their error statistics. An ensemble forecast with 80 members is used to produce background error covariance. The preliminary testing presented in this paper includes single-observation experiments as well as real data assimilation experiments on a squall line with assimilation windows of 5, 15, and 30 min. The results indicate that the system is able to obtain anisotropic multivariate analyses at the convective scale and improve precipitation forecasts. The results also suggest that the incremental approach with successive basic-state updates works well at the convection-permitting scale for radar data assimilation with the selected assimilation windows.
Publisher
American Meteorological Society
Cited by
133 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献