Evaluation of WRF Model Resolution on Simulated Mesoscale Winds and Surface Fluxes near Greenland

Author:

DuVivier Alice K.1,Cassano John J.1

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract Southern Greenland has short-lived but frequently occurring strong mesoscale barrier winds and tip jets that form when synoptic-scale atmospheric features interact with the topography of Greenland. The influence of these mesoscale atmospheric events on the ocean, particularly deep ocean convection, is not yet well understood. Because obtaining observations is difficult in this region, model simulations are essential for understanding the interaction between the atmosphere and ocean during these wind events. This paper presents results from the Weather Research and Forecasting (WRF) Model simulations run at four different resolutions (100, 50, 25, and 10 km) and forced with the ECMWF Re-Analysis Interim (ERA-Interim) product. Case study comparisons between WRF output at different resolutions, observations from the Greenland Flow Distortion Experiment (GFDex), which provides valuable in situ observations of mesoscale winds, and Quick Scatterometer (QuikSCAT) satellite data highlight the importance of high-resolution simulations for properly capturing the structure and high wind speeds associated with mesoscale wind events and surface fluxes of latent and sensible heat. In addition, the longer-term impact of mesoscale winds on the ocean is investigated by comparison of surface fluxes and winds between model resolutions over a two-month period.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference49 articles.

1. Simulating a severe windstorm in complex terrain;Agustsson;Meteor. Z.,2007

2. Open-ocean convection in the Irminger Sea;Bacon;Geophys. Res. Lett.,2003

3. Southwesterly flows over southern Norway—Mesoscale sensitivity to large-scale wind direction and speed;Barstad;Tellus,2005

4. Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean;Bromwich;J. Geophys. Res.,2009

5. Performance of the Weather Research and Forecasting Model for month-long pan-Arctic simulations;Cassano;Mon. Wea. Rev.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3