Impact of Assimilating AMSU-A Radiances on Forecasts of 2008 Atlantic Tropical Cyclones Initialized with a Limited-Area Ensemble Kalman Filter

Author:

Liu Zhiquan1,Schwartz Craig S.1,Snyder Chris1,Ha So-Young1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The impact of assimilating radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A) on forecasts of several tropical cyclones (TCs) was studied using the Weather Research and Forecasting Model (WRF) and a limited-area ensemble Kalman filter (EnKF). Analysis/forecast cycling experiments with and without AMSU-A radiance assimilation were performed over the Atlantic Ocean for the period 11 August–13 September 2008, when five named storms formed. For convenience, the radiance forward operators and bias-correction coefficients, along with the majority of quality-control decisions, were computed by a separate, preexisting variational assimilation system. The bias-correction coefficients were obtained from 3-month offline statistics and fixed during the EnKF analysis cycles. The vertical location of each radiance observation, which is required for covariance localization in the EnKF, was taken to be the level at which the AMSU-A channels’ weighting functions peaked. Deterministic 72-h WRF forecasts initialized from the ensemble-mean analyses were evaluated with a focus on TC prediction. Assimilating AMSU-A radiances produced better depictions of the environmental fields when compared to reanalyses and dropwindsonde observations. Radiance assimilation also resulted in substantial improvement of TC track and intensity forecasts with track-error reduction up to 16% for forecasts beyond 36 h. Additionally, assimilating both radiances and satellite winds gave markedly more benefit for TC track forecasts than solely assimilating radiances.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3