Application of GOES-16 Atmospheric Temperature-Profile Data Assimilation in a Hurricane Forecast

Author:

Qian Zhiying123,Bao Yansong23,Liu Zirui4,Lu Qifeng5,Wang Fu5ORCID,Tang Weiyao6

Affiliation:

1. Tianjin Wuqing District Meteorological Bureau, Tianjin 301700, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China

4. Tianjin Meteorological Observation Centre, Tianjin 300202, China

5. CMA Earth System Modeling and Prediction Centre, State Key Laboratory of Severe Weather, Beijing 100081, China

6. Guizhou Provincial Center of Meteorological Information Support, Guiyang 551200, China

Abstract

This paper selects the case of the Atlantic hurricane “Michael” in 2018 to evaluate the accuracy of the GOES-16 atmospheric temperature profile during the hurricane and its effect on forecasting. Based on the weather research and forecasting (WRF) model, the assimilation of GOES-16 atmospheric temperature-profile products was achieved by using three-dimensional variational (3DVar) and the ensemble transform Kalman filter/three-dimensional variational (ETKF/3DVAR) hybrid system (Hybrid) systems. And the impact of geostationary satellite GOES-16 atmospheric temperature-profile data assimilation on a hurricane forecast is evaluated. The results show that, during the hurricane, the root mean square errors of the GOES-16 atmospheric temperature profile are all within 2 k at the height of 200–1000 hPa, and the quality of the data is generally good. Assimilating the GOES-16 atmospheric temperature-profile data can indeed effectively improve the analysis increment and improve the prediction results. The assimilation increment obtained by the hybrid system has obvious “flow-dependent” characteristics, which can reasonably improve the initial field of the model. Its temperature increment has an obvious spiral structure, which is in line with the characteristics of the hurricane, and the adjustment of the wind field and geopotential height field is also more beneficial to the development of the hurricane. It has a positive impact on the forecast of track, intensity, and precipitation, and the hybrid system is improved more obviously. In addition, from the RMSE of the analysis field and the forecast field relative to the observation data of different elements, the hybrid system is superior to the 3DVar system.

Funder

Natural Science Foundation of China

Major Science and Technology Program of the Ministry of Water Resources of China

Water Science and Technology Project of Jiangsu Province

Research Funds of Jiangsu Hydraulic Research Institute

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3