Verification of a Mesoscale Data-Assimilation and Forecasting System for the Oklahoma City Area during the Joint Urban 2003 Field Project

Author:

Liu Yubao1,Chen Fei1,Warner Thomas2,Basara Jeffrey3

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. National Center for Atmospheric Research,* and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

3. Oklahoma Climate Survey, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractThe National Center for Atmospheric Research (NCAR) and the U.S. Army Test and Evaluation Command have developed a multiscale, rapid-cycling, real-time, four-dimensional data-assimilation and forecasting system that has been in operational use at five Army test ranges since 2001. This system was employed to provide operational modeling support for the Joint Urban 2003 (JU2003) Dispersion Experiment, conducted in Oklahoma City, Oklahoma, during July 2003. To better support this mission, modifications were made to the nonlocal boundary layer (BL) parameterization (known as the Medium Range Forecast scheme) of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model, in order to improve BL forecasts. The NCEP–Oregon State University–Air Force–Hydrologic Research Laboratory land surface model was also improved to better represent urban forcing. Verification of the operational model runs and retrospectively simulated cases show 1) a significantly reduced low bias in the forecast surface wind speed and 2) more realistic daytime BL heights. During JU2003, the forecast urban heat island, urban dry bubble, and urban BL height agree reasonably well with observations and conceptual models. An analysis of three-dimensional atmospheric structures, based on model analyses for eight clear-sky days during the field program, reveals some interesting features of the Oklahoma City urban BL, including complex thermally induced circulations and associated convergence/divergence zones, a nocturnal thermal shadow downwind of the urban area, and the reduction of low-level jet wind speeds by more vigorous nocturnal mixing over the city.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

1. Overview of Urban 2000—A multiscale field study of dispersion through an urban environment.;Allwine;Bull. Amer. Meteor. Soc.,2002

2. Allwine, K. J., M. J.Leach, L. W.Stockham, J. S.Shinn, R. P.Hosker, J. F.Bowers, and J. C.Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc., CD-ROM, J7.1.

3. Numerical modeling of urban heat-island intensity.;Atkinson;Bound.-Layer Meteor.,2003

4. Nocturnal low-level jet characteristics over Kansas during CASE-99.;Banta;Bound.-Layer Meteor.,2002

5. The parameterization of surface fluxes in large-scale models under free-convection.;Beljaars;Quart. J. Roy. Meteor. Soc.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3