Physical Factors Influencing Regional Precipitation Variability Attributed Using an Airmass Trajectory Method

Author:

de Leeuw Johannes1,Methven John1,Blackburn Michael2

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

2. National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Abstract

Abstract A novel Lagrangian framework is developed to attribute monthly precipitation variability to physical processes. Precipitation variability is partitioned into a combination of five factors: airmass origin location, origin surface temperature variation, ascent intensity, mass fraction of ascending air, and the number of “wet” analysis times per month [>1 mm (6 h)−1]. Precipitation in a target region is linked to “origin” locations of air masses where the water vapor mixing ratio was last set by boundary layer moistening and is a maximum along back trajectories. Applying the technique to the England and Wales region, the factors together account for 83%–89% of the observed summer precipitation variability. The dominant contributor is the number of wet analyses, which is shown to be associated with cyclone statistics. The wettest summer months are mainly associated with anomalous cyclone duration rather than the number of cyclones. In addition, surface temperature and saturation humidity at the origin locations are found to be below their climatological averages (1979–2013). Therefore, the direct thermodynamic effect of anomalous surface temperature on marine boundary layer humidity acts to reduce monthly precipitation anomalies. The decadal precipitation change between phases of the Atlantic multidecadal oscillation is approximately 20% of the interannual variability between summer months. Changes in cyclone statistics have an effect 6 times larger than the direct thermodynamic factor in both monthly and decadal precipitation variability.

Funder

University of Reading

National Centre for Atmospheric Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3