On the Simulations of Global Oceanic Latent Heat Flux in the CMIP5 Multimodel Ensemble

Author:

Zhang Rongwang1ORCID,Wang Xin2,Wang Chunzai1

Affiliation:

1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

2. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Abstract

AbstractSimulations of the global oceanic latent heat flux (LHF) in the CMIP5 multimodel ensemble (MME) were evaluated in comparison with 11 LHF products. The results show that the mean state of LHF in the MME coincides well with that in the observations, except for a slight overestimation in the tropical regions. The reproduction of the seasonal cycle of LHF in the MME is in good agreement with that in the observations. However, biases are relatively obvious in the coastal regions. A prominent upward trend in global-mean LHF is confirmed with all of the LHF products during the period of 1979–2005. Despite the consistent increase of LHF in CMIP5 models, the rates of increase are much weaker than those in the observations, with an average of approximately one-ninth that in the observations. The findings show that the rate of increase of near-surface specific humidity qa in MME is nearly 6 times that in the observations, while the rate of increase of the near-surface wind speed U is less than one-half that in the observations. The faster increase of qa and the slower increase of U could both suppress evaporation, and thus latent heat released by the ocean, which may be one of the reasons that the upward trend of LHF in the MME is nearly one order of magnitude lower than that in the observations.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Key R&D Program of China

CAS-SAFEA International Partnership Program for Creative Research Teams

National Natural Science Foundation of China

National Program on Global Change and Air-Sea Interaction

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3