Abstract
AbstractThis paper evaluates Indo-Pacific warm pool (IPWP) sea surface temperature (SST) warming biases of Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6. The IPWP warming trend in the CMIP5 multi-model ensemble (MME) is closer to observation than in CMIP6 MME, but the IPWP expanding trend is the opposite. There is no qualitative improvement in the simulation of IPWP warming from CMIP5 to CMIP6. In addition, four metrics were used to investigate the performance of Indo-Pacific region warming trends in all models. CMIP6 models perform better than CMIP5 with smaller root mean square error and bias in MME and higher skill scores in MME and top models, which is tightly linked to their better performance in simulating associated physical processes in CMIP6 models. IPWP warming biases are mainly attributed to the combined effects of positive atmospheric process biases and negative ocean dynamics term biases. The positive atmospheric process biases are primarily related to the shortwave radiation and latent heat flux from atmospheric forcing, the latter of which can be attributed to the biases in surface wind fields. Compared with CMIP5 models, the IPWP warming simulated by CMIP6 models is weaker, related to the less robust atmospheric processes and the shallower thermocline anomalies simulated by CMIP6.
Funder
National Key R&D Program for Developing Basic Sciences
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Bai W, Liu H, Lin P, Shijian H, Wang F (2022) Indo-Pacific warm pool present warming attribution and future projection constraint. Environ Res Lett 17(5):054026. https://doi.org/10.1088/1748-9326/ac5edf
2. Banks HT, Bindoff NL (2003) Comparison of observed temperature and salinity changes in the Indo-Pacific with results from the coupled climate model HadCM3. Process Mech J Clim 16(1):156–166
3. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97(3):162–172
4. Bock L, Lauer A, Schlund M, Barreiro M, Bellouin N, Jones C, Meehl GA, Predoi V, Roberts MJ, Eyring V (2020) Quantifying progress across different CMIP phases with the ESMValTool. J Geophys Res Atmos 125(21):e2019JD032321
5. Cai W, Cowan T (2013) Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys Res Lett 40(6):1200–1205