The simulation of the Indo-Pacific warm pool SST warming trend in CMIP5 and CMIP6

Author:

Bai Wenrong,Liu HailongORCID,Lin Pengfei,Shen Hongyan

Abstract

AbstractThis paper evaluates Indo-Pacific warm pool (IPWP) sea surface temperature (SST) warming biases of Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6. The IPWP warming trend in the CMIP5 multi-model ensemble (MME) is closer to observation than in CMIP6 MME, but the IPWP expanding trend is the opposite. There is no qualitative improvement in the simulation of IPWP warming from CMIP5 to CMIP6. In addition, four metrics were used to investigate the performance of Indo-Pacific region warming trends in all models. CMIP6 models perform better than CMIP5 with smaller root mean square error and bias in MME and higher skill scores in MME and top models, which is tightly linked to their better performance in simulating associated physical processes in CMIP6 models. IPWP warming biases are mainly attributed to the combined effects of positive atmospheric process biases and negative ocean dynamics term biases. The positive atmospheric process biases are primarily related to the shortwave radiation and latent heat flux from atmospheric forcing, the latter of which can be attributed to the biases in surface wind fields. Compared with CMIP5 models, the IPWP warming simulated by CMIP6 models is weaker, related to the less robust atmospheric processes and the shallower thermocline anomalies simulated by CMIP6.

Funder

National Key R&D Program for Developing Basic Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3