Decadal Change of Heavy Snowfall over Northern China in the Mid-1990s and Associated Background Circulations

Author:

Zhou Botao123,Wang Zunya4,Sun Bo123,Hao Xin123

Affiliation:

1. a Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

2. b Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

3. c Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China

4. d National Climate Center, China Meteorological Administration, Beijing, China

Abstract

AbstractAnalyses of observation data from 1961 to 2014 by using the empirical orthogonal function (EOF) method indicate that the primary mode (a monosign pattern) of heavy snowfall over northern China in winter shows evident variations from a negative polarity to a positive polarity in the mid-1990s. Associated with this decadal change, the southward displacement of the polar front jet stream and northward shift of the subtropical jet stream in the upper troposphere are apparent. Accordingly, a negative height anomaly dominates the region from Lake Balkhash to Lake Baikal and a positive height anomaly occupies the midlatitudes of the North Pacific in the middle troposphere. Such anomalous patterns in the middle and high troposphere correspond approximately to the northern mode of the East Asian winter monsoon (EAWM) and may favor the interaction of cold air with moist airflows over northern China, which helps increase local heavy snowfall. Further investigation shows that the shift in the Atlantic multidecadal oscillation (AMO) from a cold phase to a warm phase in the 1990s may also play a role, through its linkage to the above atmospheric circulations with the aid of a downstream propagation of wave train that emanates from the Atlantic Ocean.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3