Arctic Sea Ice Seasonal Prediction by a Linear Markov Model

Author:

Yuan Xiaojun1,Chen Dake2,Li Cuihua1,Wang Lei1,Wang Wanqiu3

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. State Key Laboratory of Satellite Ocean Environment Dynamics, SIO/SOA, Hangzhou, China, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

3. Climate Prediction Center, National Centers for Environmental Prediction, College Park, Maryland

Abstract

Abstract A linear Markov model has been developed to predict sea ice concentration (SIC) in the pan-Arctic region at intraseasonal to seasonal time scales, which represents an original effort to use a reduced-dimension statistical model in forecasting Arctic sea ice year-round. The model was built to capture covariabilities in the atmosphere–ocean–sea ice system defined by SIC, sea surface temperature, and surface air temperature. Multivariate empirical orthogonal functions of these variables served as building blocks of the model. A series of model experiments were carried out to determine the model’s dimension. The predictive skill of the model was evaluated by anomaly correlation and root-mean-square errors in a cross-validated fashion . On average, the model is superior to the predictions by anomaly persistence, damped anomaly persistence, and climatology. The model shows good skill in predicting SIC anomalies within the Arctic basin during summer and fall. Long-term trends partially contribute to the model skill. However, the model still beats the anomaly persistence for all targeted seasons after linear trends are removed. In winter and spring, the predictability is found only in the seasonal ice zone. The model has higher anomaly correlation in the Atlantic sector than in the Pacific sector. The model predicts well the interannual variability of sea ice extent (SIE) but underestimates its accelerated long-term decline, resulting in a systematic model bias. This model bias can be reduced by the constant or linear regression bias corrections, leading to an improved correlation skill of 0.92 by the regression bias correction for the 2-month-lead September SIE prediction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3